
 1

A Case against the Use Cases in the Classroom?

Bernardo Ventimiglia
TREMPET

University of Quebec At Montreal
CP 8888, succ. Centre-ville

Montreal QC H3C 3P8
Canada

Ventimig@Labunix.uqam.ca

 Louis Martin
Dep. of Computer Science

University of Quebec At Montreal
CP 8888, succ. Centre-ville

Montreal QC H3C 3P8
Canada

Martin.Louis@uqam.ca

Abstract
The ubiquitous presence of the use cases approach is a

fact. Its popularity is based on true success the approach
has brought to practitioners. It’s back with abundant
literature. But are use cases a true requirement engineering
approach or are they more a system design approach?
Should methodologies based on use cases be the only ones
taught in the undergraduate university program?Based on
actual experiences in teaching requirements engineering,
this paper argues in favor of a mixed approach where use
cases are complemented with a more “domain oriented”
style: the Jackson approach. Some implications of our
teaching experience are presented.

1. Introduction
1.1. Requirements Engineering

Requirements Engineering (RE) as implicitly defined in
[1] subsumes system and software requirements. The
definition of requirements of [1]: “A requirement is a
property that must be exhibited by a system developed or
adapted to solve a particular problem” is a synthesis of the
paragraph 1) et 2) of the requirement definition of [2]. The
introduction of the RE discipline allowed the change of the
requirement process from a start-up task to a set of tasks
that spans all the product’s life cycle. The main reason of
this change of perspective is probably the end of the big
hope that had been generated by requirements-centered
development and the passage to an architecture-driven and
evolutionary approach [3]. This span creates an
interweaving of programming-oriented tasks with user and
requirements-oriented tasks and creates also the bases for
the success of UML as a language for requirements and
design. The introduction of a seamless approach based on a
language had, from our point of view, an inopportune
consequence: the creation of a “foggy” zone where
requirements analysis and system design are blurred. This
“foggy” zone is dramatically dangerous in a classroom

where the students have not the technical maturity that
allows the best of practitioners to advance in spite of “fog”.

The Unified Process (UP) is a very popular process for
developing object oriented systems based on UML and that
has the Use Cases (UC) as the central method for
requirements specification.

This is the context in which we want to raise some
questions about the use of use cases as a method for RE in
the classroom.

1.2. The teaching context
The Baccalauréat en informatique et génie logiciel

(Undergraduate degree program on computer science and
software engineering) de l’Université du Québec à
Montréal (UQAM) has three 45 hours courses on RE:

1) INF-5151 (Software Engineering I: Analysis and
Modeling) is mandatory and is the first and main
course in RE (see table 1 for the course
description);

2) INF-4150 (Human-Machine Interfaces) is optional
and concerns mainly the design of GUI;

3) INM-5151 (Analysis and Modeling Project) is
mandatory and is a practical course where students
must write a complete Software Requirement
Specification (SRS) based on [4].

We will analyze only INF5151 because this is where
all the main concepts of RE are introduced. In the Fall
2001, the course textbook was [5]. In Winter 2002, two of
the three teachers used two textbooks: [5] and [6]. The
majority of winter students were dissatisfied with the
Jackson approach presented in [6]. Their main complaints
were: “too theoretical”, “nothing concrete”, and “too
vague”. Even the teachers were dissatisfied. We decided to
retry the experience of mixing UP approach as supported
by [5] and the more problem-oriented approach of [6] in the
Summer 2002 semester. Our decision was based on the fact
that the students in the following course “Software
Design”, when prepared only with the UP approach, were
not able to understand the domain problem of an industrial

 2

SRS that was used as input for their software design course.
Our hypothesis was that students equipped with the two
approaches would be better prepared to face the challenge.
This hypothesis will have to be confirmed or rejected with
future work.

Because of the negative feedback on the Jackson
approach, we decided to organize all the lessons around a
well-known domain problem (we thought it was well
known!) : the management of a family CD, DVD and video
inventory.

The students, in group of two or three, had to produce
three artifacts:

• A Concepts of Operations written according to [7].
The ConOps had to be delivered after four weeks
based on a template provided by the teacher.

• A SRS written according to [4] with a table of
contents modified to contain two context
diagrams : one according to UP (use cases context
diagram) and the other according to Jackson
(context diagram).

• A first level GUI prototype.

2. The two approaches
In this section we present the main elements of the two

approaches (UP-Larman based on [5] and Jackson based on
[6]) that drove our teaching experience.

2.1. RE: Use Cases centered (UP-Larman)
UC is “a description of a set of sequences of actions,

including variants, that a system performs that yields an
observable result of value to an actor” [8] and is very useful
to “clearly identify the boundary of the system”[10]. UC is,
presently, an ubiquitous approach to system and software
analysis. Larman in [5] summarizes clearly the relationship
between UC and requirements: “Use cases are
requirements […]. In the UP — and most modern methods
— use cases are the central mechanism that is
recommended for […] the discovery and definition [of
functional requirements]”. Even if Larman insists that UC
are textual, it’s clear that the strength of UC lies in their
discreteness — the fact that they are organized in short
numbered paragraphs. This discreteness facilitates the
move toward the System Sequence Diagrams (SSD). The
students like SSD because they get the impression that they
founded the key-events to limit the system. We wrote
“impression” because SSD are made before the writing of
the contracts. At that stage, a lot of ambiguity is still
present, for instance, the formal definition of the
parameters are not fixed. But in the UP-Larman approach,
the contracts are specified in the design discipline. In this
approach, the context is functional and is described via a
transparent rectangle containing the names of the CU (see
Figure 1 for an example),

In Larman, the “domain model” is produced after the
UC definition. The “domain model” is composed of the
concepts with their attributes and the association between
them relevant to the problem under study.

It is certainly not useless to emphasize that a object
oriented process as UP has a functional description (UC) as
a “central mechanism”.

2.2. RE: Domain centered (Jackson)
The theoretical foundation of Jackson’s approach can

easily be grasped via his definitions of requirement and
specification: “A specification forms a bridge between
requirements engineering, which is concerned with the
environment, and software engineering, which is concerned
with the machine” [9]. In defining specification, implicitly,
Jackson establishes a base for a definition of RE that is
different from the SWEBOK definition [1]. But such an
important difference for the software engineering
foundation is not essential for our topic. If we introduce a
“machine” to help solving a problem: “[t]he problem in not
in the computer interface – it is deeper into the world,
further away from the computer” [6] .

All artifacts made during RE concern mainly the
understanding of the problem domain (psychological,
technological and functional imbalance between the present
and the anticipated situation). The term “world” in the M.
Jackson’s sentence must of course be interpreted as “the
reality as presented in human words”. But if the world is
described in human words, it’s clear why as stated in [11]
“The requirements engineer must be a good listener”.
“Being a good listener” is not a moral quality, but is about
intelligence and natural language skills. Briefly: the
requirements engineer must “listen to the world” because
the problem is in the world and the world speaks only
through human beings (the stakeholders in the RE jargon).

The Jackson approach is based on world analysis and
problem structuring, because “Our problems and
requirements are in the world, not in the computer. We
must focus in them directly, and describe them
conscientiously” [6].

The first step is to draw a context diagram (see the
examples in Figure 2a and Figure 2b) where all the
“relevant” domains are represented with their interfaces
with the machine. The second step is to draw a problem
diagram where the requirements are added to the context
diagram. The “drawing” of the problem diagram is not a
simple task and is not a task that you can do perfectly the
first time. The quality of the specification (the bridge that
allows the transition from the problem in the world to the
problem in the machine) is deeply dependent on the
problem diagram that is, at the same time, the source and
the center of the elicitation and analysis.

Jackson introduces the concept of “problem frame” as
problem “stereotype” that can help in the specification.
Problem frame is the equivalent of design patterns in

software design with an important difference: the design
patterns are the smallest “grains” of the design and, on the
other hand, problem frames can (must) be subdivided to fit
in smaller problems (subproblems) that are projections1 of
the problem that initiates the process.

2.3. Context diagrams: UC versus problem
The UP-Larman context diagrams and the Jackson

context diagrams are very different and they are a
consequence of two “opposite” views of the RE. We think
that Jackson can accept the definition of [5]: The context
defines the environments in which the system lives, only if
we substitute “system” with “machine”2. The main
difference between the two approaches are about the
relative importance of system and environment. In a UC
centered approach as UP what is central is the system as
seen by the actors, in the Jackson approach the center is the
domains that constitute the environment (the problem).

In one case, we organize the requirements starting from
functions and their decomposition through UC, in the other
case, we analyze the domains “as part of the world that are
relevant”. The difficulties for the analyst is the choice of
the UC and of their level of details for one approach. On
the other hand, the difficulties are in the choice of the
“relevant domains”. If from a pedagogical point of view it
is important to straighten the differences between the two
approaches, in practice there are some elements in common
because the “relevance” of a domain is related to the
functions.

3. Case Study
In this section, we present the problem that the students

had to solve and some of the difficulties in the problem
understanding that we think could be defeated only if UC
are not the “central mechanism”. That does not mean that
what we are saying is true for all the problems but that
there is at least one kind of problems where the domain
analysis must precede the UC.

The table 2 presents a summary of the statement
triggering the session work.

3.1. The context diagrams : functions and domains
When the students can draw a diagram they are “happy”,

and so is the teacher. Why? Because they have the feeling
of precision : lines, circles, rectangles… everything is so
neat! When they write a context diagram they are happier,
because the system is now bounded.

We asked the student to insert two context diagrams in
their SRS: one prepared according to UP and the other one
according to Jackson. The fact of putting the two diagrams

1 Projections and not partitions as in UC decomposition.
2 The change is not insignificant, particularly with the students that

like to put the word “system” everywhere. In our course we decided to
ban the use of the term “system”, because of its pedagogically
dangerous ambiguity.

in the same document was a way to show to the students
the differences between a context diagram based on
functionalities as proposed by UP-Larman and a context
based on the domain as proposed by Jackson.

In the case of our project, the UC where straightforward.
Even the students who were not very interested made a
“good” UC context diagram. See Figure 1 for the typical
UC context. There were unimportant differences between
the UC context drawn by each student. All diagrams were a
simple transposition of the primary functions described in
the ConOps.

Figure
student

The

the cho
question
Outlook
analyze
shows t
— too s
Human
contains
system
the stud
The figu
students
besides
things t
they ca
group p
group u
of the
structur
analysis
didn’t s
our sol
structur

Read
media

Borrow

F
M r

Manage
users
amily

embe
 1. UC Context. A typical diagram pres
s,

domain context was more difficult to draw
ice of the “relevant domains” generated
s. Is the house a domain ? and the fa
 ? Why ? The questions forced the stu
 the problem and not only the functions. F
he simplest context diagram drawn by the
imple, so simple that his only usefulness
Machine Interface design. But even if it is
 a domain that is not directly connecte

as the UP actors. This topology “forces”, i
ent to analyze media independently of the
re 2.b presents the most complex context
 take into consideration seven (7) relevant
the machine domain. They were forced

hat they thought were simple and that the
n ignore at the beginning. For example
ut the house as a relevant domain and
nderstood that the “label” identifying the
album was not a simple string. They pr
e for the label that was the consequenc
 of the house domain. The others groups
ee “the problem” at first, but even when w
ution they did not understand the impo
ing the label according to the house structu

Print label
…

Friend.
3

ented by

, because
 a lot of
mily and
dents to
igure 2.a
 students
in for the
simple, it
d to the

n a sense,
 machine.
where the
 domains
 to study
y thought
only one
only one
 position
oposed a
e of the
 not only
e explain
rtance of
re.

Admin.

Figure 2a. “Jackson” Contex
of the course

Figure 2b. Jackson” Context
the course. Outlook is con
student because in the Co
constraint about the nece
sending a letter to a lender
“late”.

3.2. The conceptual diagram
In the previous section, we m

difficulty of analyzing the “labe
take into consideration another
students had difficulties. From th
the problem was straightforw
compare the length of classica
length of a movement is writte
problem ! But, often in RE, wh
there is a big problem.

All the students were familiar
but only 3 out of 40 listened spo
They had no idea about the con
The majority of them made a d
song and a physical track on C
well-known “Piano Sonata No
Waldenstein-sonate” in three
accepted the mapping of a mo
some difficulties to figure out th
correspond to the movement
increased when they tried to un
brio” was an attribute of a musi
was an attribute of the moveme
they know that? In theory ye
expressed the need to compar
Moreover, a “domain specia
classroom to respond to any qu
They had the time to prepare th
and they were cued to cover the
was so difficult to grasp that dur
not an attribute of the piano so
We think because they don’t an

relationship between the movement characteristics
established by the creator and “freedom” of the interpreter.
But why they stopped to early their analysis ? May be
because they are not used to work hard on the clarification

 Machine

 Mac

y
Media
t: The simplest diagram

 : The m
sidered
nOps w
ssity o
when h

: the “m
ade a qui
l”. In th
 point w
e functio
ard: th
l music
n on th
en there

, of cours
radically
cept of m
irect asso
D. When
.21 in C
 movem
vement t
at the tra
number.
derstand
cal move
nt execu
s, becau

e the mo
list” was
estion stu
emselves
 moveme
ation of
nata but
alyze en

of concepts expressed in the natural language.

4. Teaching the ambiguity
If the road from vague needs to a formal and

unambiguous SRS is long, hard and full of traps for an
experienced software engineer, how can we teach it without
losing the intellectual richness which springs from the
complexity of the realm that the language tries to master ?
The famous sentence that Hegel applied to philosophy is
perfectly at home in RE too: “the general drift is a mere c y

hine

s

t

Musi
Film
 Famil
Outlook
Morpheu
Famil
o
re
e
f
is

ov
ck
is
ith
na

e
 m
e
 is

e,
to
u
ci
 c

en
o
ck

 th
m
tio
se
v

de
 fo
nt
the
of
ou
Interne
4

re complex of
levant by the
 introduced a

automatically
/her state was

ement” trap
 reference to the
section we will
 which all the
l point of view,
program must
ovements. The

album, so… no
 “no problem”,

 with pop music
 classical music.
sical movement.
ation between a
onfronted to the
major, Op. 53
ts, then they

a track but had
 number did not
The difficulties
at “allegro con

ent but duration
n itself. Should
 one user has
ement duration.
invited in the
nts might have.
r that interview

 subject. Why it
 movement was
 its execution ?
gh in detail the

activity in a certain direction, which is still without its
concrete realization; and the naked result is the corpse of
the system which has left its guiding tendency behind it”
[12]. The bare SRS is only a corpse when students have no
access to an expert doing RE!

The ambiguity around the definition of the analysis and
its current prescriptive artifacts has great impacts on the
way we can and should teach RE. These impacts are not
necessarily negative. Consider two extreme situations:

1. The teacher who is not conscious of the ambiguity
around analysis will teach in a way that everything
appears to be well defined. This lack of
consciousness is not always linked to a lack of
knowledge in pedagogy or in the ER domain itself
but can be the result of a lack of practical
experience in complex system analysis or in an
excessive confidence in the “standards” of the day.
This teacher will tend to negatively evaluate
students that seam to not see thing “clearly” and
s/he will try to direct them toward “formal
approaches” to make the perceived ambiguity
disappear. Today some of these “formal
approaches” include system sequence diagrams,
state diagram, etc. For the majority of the students,
this teacher will bring a secure way of seeing
“reality”.

2. The teacher who is well aware of the ambiguity of
the “reality” will teach in a way to uncover some
of the multiple and all-valid points of view of a
problem domain. This approach risk to discourage
students who mainly seek a recipe to analyze
problem domains. They will have the feeling that
they are not capable to grab the essence of a
domain and that they will never be able to do so.

5. UC centered approach, easiness and trend
To place and understand better our critic, let’s

summarize here two « hidden paradigms » which orientate
our teachings :

1. When they are short in time (15 weeks to learn
RE) and facing an alternative, students, as any
human being would do, choose always the

 5

easier way, the one which give them the
impression to speed up.

2. College education does not give enough
importance in speaking and well writing (and
therefore well listening), and then students do
not push hard enough the possibilities of
natural language, specially if teachers insist on
its ambiguity

To our mind, it is clearly more simple to establish the
frontiers of a « system » and solicit it with events than to
examine the environment in which it stands. Finding
constraints imposed by the world to a machine that we want
to build is complex and cannot be reduced to exchanges
between the actors and the system. This apparent simplicity
often generates ad hoc systems which later will be difficult
to adapt to changes. In the context of undergraduate studies,
it generates a “work style” which is not demanding enough
to their ability to manipulate natural language.

The Larman view (“UC are requirements”) is
interesting because it says a lot about the synonymity, made
by almost all UML followers, of UC and functional
requirements. But we feel uncomfortable with this
formula : UC are only one method, one tool to help
requirement elicitation and specification. An experienced
analyst can benefit from a UC centered approach because it
is one of many tools he have in his hands to better
understand a problem domain. An experienced analyst
knows the limits and the strengths of the tools he uses, this
is the essence of experience.

For an undergraduate student, it reminds us the phrase:
“If the only tool you have is a hammer, you tend to
consider everything around you as a nail”. But even if in
[5] the differences between the domains are not revealed,
the practices and the coverage of UC in the context of
closed systems, real time systems, information systems are
quite different.

Teaching use cases to undergraduate students in IT with
no real working experiences of any domain and when their
prerequisites are mainly programming languages, computer
architecture and mathematics induces a bias toward a
design view of the subject instead of a more comprehensive
view toward the domain itself. Even if we use problems in
a domain they know well: music, CD, etc.

Actually we consider that the UC approach is used in
sector where it can be harmful. The tendency to do so is
based on a few factors:

- it’s the trend;
- it’s easier to use an approach that reassure us

instead of trying to explore a domain where
nothing seem certain.

6. Conclusions
The feedback from the students was positive, even if

they found that the Jackson approach was harder and less
evident than UP. They didn’t think that it was “too vague”:

eventually they judged it “too concrete” because of the
necessity of analyzing in a great detail the “physical”
albums. We too were satisfied because we have the
impression that, at least the best students acquired a “style”
more RE oriented and less system design oriented than the
students that we have had the previous years.

RE is about understanding the environment where the
machine will operate from the points of view of the distinct
domains that contribute to the problem. RE is not only
about events and system : events and system are above all
elements of system design. RE it’s about finding
commonalities between stakeholders points of view as well
as contradictions (and to try to resolve them if possible). In
RE, apart from some very special domains, the
requirements engineer works with natural language to build
the bridge between needs and a formalized SRS. If this is
our vision of the ER ; if we think that a good modeling tool
should be transparent and help the understanding of the
reality it tries to model ; if we think that a UC centered
approach mix-up RE and system design, why we didn’t
teach only the Jackson approach ? Because the students
have others courses in the curriculum where the UC
approach is a precondition, because there is others teachers
that do not necessarily agree with us, but above all, because
employers request UP, UML and Rational Rose mastering3.

The difficulties with “labels” and with “movement” help
us to understand that only an analysis of the problem
independent from the exchanges at the machine border can
bring to a machine that is truly stable.

We think that teaching, when is linked to the world
outside the university, allows to see with a greater clarity
the drawbacks of certain choices. Teaching ER to software
engineering students with the intent to bring them to
specify requirements and not to design the machine, makes
obvious the fact that a clear cut in necessary between the
ER and the rest of the development. This separation does
not contradict an iterative approach as UP but emphasize
the distance in skill, knowledge, and methods between the
“discipline” of requirements and the discipline of system
and software design. A consequence of this “belief” is not
only that every seamless approach is doomed to fail but
also that RE is more comprehensively thought based on [9]
than based on [1].

As last point, we want to emphasize that our position is
not against UC centered approach as much as to promote a
shift of focus in teaching RE because we consider harmful
to teach only one point of view like “une pensée unique”
even if this point of view has a lot of valid aspects and is
accepted by well-known “thinkers” of the RE.

3 This is an important constraint, we form undergraduate students

mostly for the industry.

 6

Table 1. INF5151 Software Engineering: Analysis and
Modelling. Course description.

Explore the basis and evolution of analysis methods.

Complete the detailed study and application of a method.
Define the user’s role in all the steps of design and
development.

Notions about systems and a systemic approach. Choice
of the life cycle model. The various steps of the process.
Exploration of the domain, feasibility study, definition of
the system (hardware and software), requirements
specifications. Dynamic and functional object modeling.
Tools for requirements definition. Critical review of the
methods used in industry and evolution of the user’s role in
system development. Quality of specification and interface

Table 2. A summarized statement of work for the
session

A modern family composed of four generations

(children, parents, grandparents, grand grandparents) has
over 1000 CDs, 200 DVDs and 400 videocassettes. The
family members use a total of 7 PCs at home and one at
work.

The principal needs are:
• Managing the inventory including for every

album: title, localization (to be printed on a
label), owner, cost, and titles of the each part. If
the album is lent: lender’s name, to whom, when
and the anticipated date of return. The borrower
must have a degree of trust.

• Being able to obtain lists for music based on:
author, singer, orchestra, orchestra director,
artist, year of recording, language, author’s or
singer’s country, category, etc.

• Being able to obtain lists for films based on:
director, scriptwriter, actors, year, original
language, film director’s country, category, etc.

• Specifically for Deutsch Gramaphon series,
being able to do exhaustive research.

• The same GUI should please the 96 years old
grand grandfather and also the computer fan.

• The software should work on Windows and
Access.

PS: Is it possible to transfer data between Morpheus Web
site and the software? Also is it possible to manage music
recorded of the hard disk with the software?
PPS: The father wants to be able to compare the
movement’s duration

Acknowledgements
Particular thanks to Guy Tremblay for his wise

commentaries and to Marguerite Deville and Véronique
Dassas for the hidden paradigms.

References

[1] P. Sawyer, G. Kotonya, “Software Requirements”,
SWEBOK, trial version 1.0 (Abram, J.W, Moore, editors),
May 2001

[2] IEEE/EIA Std 610-12-1-1990, IEEE Standard Glossary of
Software Engineering Terminology.

[3] G. Booch, Object Solutions, Addison-Wesley, 1996.

[4] IEEE Std 830-1998, IEEE Recommended Practice for
Software Requirements Specifications.

[5] Craig Larman, Applying UML and Patterns, Addison-
Wesley, 2002.

[6] M. Jackson, Problem Frames, Addison-Wesley, 2001

[7] IEEE/EIA Std 1362-1998, IEEE Guide for Information
Technology – System Definition – Concept of Operation
Document.

[8] G. Booch, J. Rumbaugh, I. Jacobson, The Unified Modeling
Language User Guide, Addison-Wesley, 1999.

[9] M. Jackson, “The meaning of requirements”, Annals of
software engineering, Volume 3 (1997) - Software
Requirement Engineering, Baltzer Science Publishers.

[10] G. Schneider, J. P. Winters, Applying Uses Cases, Addison-
Wesley, 1998.

[11] C. K. Chang, M. Christiansen, “Blueprint for the ideal
Requirements Engineer”, IEEE Software, March 1996.

[12] G.W.F. Hegel, The phenomenology of Mind, translated by
J.B. Baillie ,
http://www.ets.uidaho.edu/mickelsen/ToC/Hegel%20Phen%2
0ToC.htm.

http://www.ets.uidaho.edu/mickelsen/ToC/Hegel Phen ToC.htm
http://www.ets.uidaho.edu/mickelsen/ToC/Hegel Phen ToC.htm

