
 CITSA 2006

Most Stable Elements First Approach

Ivan Maffezzini
Université du Québec à Montréal

CP 8888 Succ. Centre Ville
Montréal H3C 3P8 Canada
Maffezzini.Ivan@UQAM.ca

ABSTRACT
After the introduction of the hypothesis upon which our
research is based, we describe the conceptual framework
of the methodology we propose. The framework presents
an overview of computer-based automation where the
most important artefact is a non-formal document
describing concepts and requirements. Follows a
description of an approach based upon a classification of
requirements, concepts, objectives and constraints. Based
upon a stability criterion three categories are established:
Hard Core, Protective Belt, Fluctuating Elements. The
levels of stability impose an order on the implementation.
The artefacts for the requirements of the three categories
of stability are outlined. The approach named “Most
Stable Element First” furthers the introduction of the
details from the beginning. The conclusion presents a few
positive elements that our approach brings to the
automation domain.
Keywords: Information and Technology - Computing -
Information Systems – Product Quality (or Method and
Methodologies)

INTRODUCTION
The problem.
Engineering does not exist without methods and software
engineering (SE) is far from breaking the rule. One can
probably also state that it is precisely because
methodology is so important in SE that different
methodologies have appeared and disappeared at speeds
inconceivable for other engineering sciences. Changes of
paradigms in SE occur so often that it sometimes seems
as though we are dealing with a branch of the humanities
rather that with a technical domain. Although in its
beginnings, SE forced activities, methods and
deliverables to conform to an overrigid structuration in
order to avoid the laisser-faire of ad hoc methods made
up for every new kind of problems, nowadays approaches
such as extreme programming praise a laxness which
threatens to erase many of the gains acquired by SE. It is
essential to find some kind of compromise between these
two extremes even if it’s very likely that the opposition
between the proponents of agile development — claimed
to be adaptive and people oriented — and the proponents
of “traditional” software engineering — processes and

documentation driven — will continue for years. Both
sides champion two truths that, unfortunately, are often
transformed into non-truths by opponents who make it
simplistic or by dogmatic militants who ignore the
contribution from the other camp.
For sure, both sides are interested in methodologies.
Unified Process (UP) [1] is a good example of a
compromise even though we believe that the downside is
that UP lacks details in the definition of the means to
establish iterations and increments.
In this communication we will put forward an approach
which is general enough to be applicable to processes
such as UP and to more classic ones, but at the same time
which is precise enough to add value to already existing
methodologies.
« Axioms »
Our method is based on the following elements which are
not demonstrable but emerge from a rather well shared
commonsense:

1. SE, as defined by works quoted by SWEBOK [2], is
a branch of automation.

2. Every domain contains at least one part that can be
automated. This principle states that however the
world is divided, whatever the size of the domain, it
will always contain elements which can be put in
connection with elements of a machine and in such a
way as the "whole" can function with a certain
degree of autonomy. This principle does not imply
that everything in a domain can be automated.

3. Maintenability is the foremost intrinsic quality in
every engineering approach of software
development. Where maintenability is not important,
we are dealing with research or prototypation.

4. The efficiency of a methodology is “inversely
proportional” to its scope; and, therefore: The “ideal”
methodology has an applicability restricted to a few
domains.

5. A language valid for all the domains and all the
processes (as UML pretends to be) must pay for its
generality with a loss of efficiency.

1

mailto:Maffezzini.Ivan@UQAM.ca

 CITSA 2006

2

CONCEPTUAL FRAMEWORK
In this section we will describe our reference frame,
introduced in [3]
Definitions
Here are a few definitions in order to set our conceptual
framework:

World. Physical reality enclosed by natural language:
reality as it "appears" to humans. It is not merely physical
nature.

Domain. A domain is a part of the world, a linguistic
point of view on reality. The link between the world and
a domain is homeomeric with an invariance which is
never total: meaning that a domain has the same
characteristics than a world and can never be completely
separated from the whole. Because a domain implies
language as element of observation, it always is a domain
of knowledge. For example, an atom is not a domain but
atomic physics are. The language of the domain is a
specialization of natural language and its scope depends
on the domain´s characteristics. The fact of being a
specialization does not imply that natural language in its
entirety is not present when humans share ideas about the
domain. Domains condition each other thus creating huge
grey areas which might be called no domain lands. The
boundaries drawn to facilitate comprehension are often
very arbitrary and they artificially clarify the areas where
domains are overlaid. Creating clear-cut boundaries, and
thus impoverishing domains is required by
science/technique in order to make language operative.
The number of domains, even in a small part of the
world, is unlimited because domains are continually
being created, modified or destroyed. The rhythm of
creation, modification and destruction depends on the
domain´s characteristics and on the evolution of
technique and of knowledge. There are also cultural and
historical phenomena that influence the organisation of
the world into different domains. In physics, for example,
a branch (or a domain?) such as quantum mechanics
which did not exist a century ago, has a huge importance
nowadays, and not only in physics.

Machine. A human artefact composed of parts
which are required for the realisation of functions aimed
at by its construction. A part of a machine can be a
machine. A program is a machine.

Automation. The use of machines aimed at
transforming data received from the exterior and
executing autonomous actions having an impact on the
world. This definition restores a meaning that the use of
the term in process control has somehow erased. Even
though we consider mostly automation realised by
computers, a larger definition allows to characterize the
software more easily. By way of counterexample we do
not consider as automating machines (automatons):
• the water which moves the wheel of a water-mill or

the worker on an assembly line who performs
mechanical actions, because they are not artefacts;

• a book, for although it is an artefact aiming at
transforming the world, it lacks autonomy;

• a car qua car because even if it is a machine, it
does not transform data but energy;

By way of example we consider automatons:
- a cruise control for a bus;
- an application that calculates taxes.

Automation cycle
The following figure shows the world with, inside of it,
an outline of the process of automation when the
automation is performed through computers.
The full arrows represent transfers between machines or
between machines and a domain. The dotted arrows
represent transfers that require the intervention of humans
considered most of all, but not only, as beings endowed
with language.

We say bare domain even when the machine interacts
with humans: in this case, unlike in the passage from the
domain to the description, natural language is only a
means to allow the machine to interact with a
semantically impoverished domain — an impoverishment
operated during the transformation of the domain into a
sequence of bits in order to control the bare domain.
Hence the human being, based on natural language and
eventually helped by special notations (UML, for
example) creates a Non Formal Description (NFD) which
contains two types of information:
• The domain´s characteristics. They are constituted of

concepts and associations between concepts which
the machine will not be able to modify and to which
it has to adapt. For example, F=ma, in classical
mechanics is a relation between three concepts which
can not be modified by a machine

• The controls over the domain. That which is imposed
on the domain; requirements and constraints fixed on
the domain. That for which the machine was created.
In the previous example a requirement could be to
prevent F from being superior to a fixed limit. The
possibility of this does not depend on the law of
Newton but on other characteristics of the domain.

It is essential to keep in mind the more precise the NFD
hence the closer to the machine, the further from the
domain because it operates a semantic impoverishment of
the language of the domain.

Non Formal
Description

Domain

Natural
Language

Bare
Domain

Machine

Interface

World

Program

Fig. 1 : Automation Cycle

 CITSA 2006

3

What we just said is not true when the domain is
constituted only of operational machines, because in this
case the NFD is only a set of references to the complete
descriptions of the machines or to formal descriptions.

Conclusion.
This framework allows us to point out elements which
condition the Software Life Cycle process:

1. Natural language is an impassable presence in the
automation. This implies that we can not get rid of its
ambiguities. These ambiguities will be transformed
into errors in the exchanges between the domain and
the machine. The advantage of formal specifications
introduced after the NFD is that they allow to find
errors earlier, not to avoid them!

2. The types of knowledge, the skills, the necessary
approaches in the activities which "transform" the
domain into NFD are very different from, and
sometimes even in contradiction with those that are
required to go from the NFD to the machine.

3. The comprehension of the domain is not important in
the part of the SE that goes from the NFD to the
computer, which means that the persons who operate
this transformation (software designers and
programmers) only need to understand the NFD.

The NFD being the central element in the construction of
a machine, what must it contain? There is no precise and
unique answer to this question: the content depends on
the domain, on the standards, on the methods of
development, etc. One thing is sure, it is that the
requirements qua phenomena of the domain [4] can not
be missed, which implies the necessity of a
conceptualisation of the domain — with the help of UML
classes for example.
In order that point 3. be true, the NFD has to be close
enough to the machine without being formal. How can
we measure this "neighbourly proximity"? Indirectly by
the precision and the lack of ambiguity, thus implying
even more detailed elements. But how can we introduce
these details so that the NFD might reflect the domain
without having the details "hiding the forest"?
The approach that we put forward in the next section —
approach that “converts” NFD into three types of
documents — is a possible answer to this question.

MOST STABLE ELEMENT FIRST
Introduction
As the tenants of UP, we believe that the IEEE approach
which is clearly stated in SWEBOK [2], i.e., “the
specification of all general requirements right from the
start” is not an acceptable one. Indeed, it is impossible to
determine when “all” requirements have been defined, on
the one hand because of the subjective elements of choice
(due to the language used in the domain) and on the other
hand because some requirements may change during the
lifetime of the machine (due to perfective maintenance
mostly)

To this impossibility to obtain “all” we add a
methodological consideration which, in our opinion, is
commonplace when the system is not too simple:
The progression from the more general (needs and
requirements) toward the more specific (the executable
program) cannot be achieved without classifying the
components of the problem at stake.
We could certainly say that a system is complex when it
is not possible to realize it without some form of
classification of the components.
Our approach can be seen as the simple common
denominator for methodologies applicable to a large
number of domains that gives a crucial position to the
“stability during the development” as presented in [5].
For this reason, we call it MSEF (Most Stable Elements
First). The approach is freely inspired by the
epistemology of Imre Lakatos [6]

Définitions
In MSEF, a project’s first step must be to characterize the
domain’s functional and quality requirements with
respect to stability with the goal of classifying the
requirements into one of the three following categories:

1. Hard Core (HC): A set of requirements, constraints,
concepts and goals judged stable during all the
system life cycle by the stakeholders. The main
reasons to introduce a Hard Core are :
• To provide a solid point of view during the

entire life cycle.
• To make “digging” of the problem easier.
• To introduce at a very early stage “details”

important to understand the problems.
• To make the addition of new people to the

project team easier.
2. Protective Belt (PB): A set of requirements,

constraints, concepts and goals with a good stability
at the beginning of the process but with a high
probability that they will change before the end of
the life cycle. The main reason to introduce a
protective Belt is to protect the HC from the
continuous (or presumably continuous) changes of
the elements in the outer circle. The Protective Belt
gives some initial assurance that the requirement
engineers and the developers share a common solid
environment even if the HC is empty (or almost
empty).

3. Fluctuating Elements (FE). A set of requirements,
concepts and goals coming up, changing and dying
out during the whole system life cycle. The main
reason is to allow managing the instability in a
systematic manner, i.e. not only by ad hoc
interventions.

The figure below shows a graphical representation of the
categorization

 CITSA 2006

4

In order to make MSEF a practicable approach, it is
important to define “stability” in an objective (ideally
based upon some stability metric) and operational manner
(categorization should not be too difficult). At this stage
of the research we can be satisfied with the definition of
[5]:

Stability can be expressed in terms of the number of
expected changes to any requirement based on
experience or knowledge of forthcoming events that
affect the organization, functions, and people supported
by the software system.

Even if this definition refers only to requirements, it may
be very well applied to the domain concepts qua elements
allowing a description/specification of the requirements
In accordance with this definition the stability depends on
the points of view of stakeholders. For a practical
application of the approach it will be necessary to
establish some operational rules. Here is an example: an
element must be put into HC if and only if all the
stakeholders agree on is stability.
The next two sections (adaptation of [7]) describe the
activities and the artefacts concerning requirement
engineering in accordance with the MSEF approach
Project workflow
The project workflow is based on the previous
classification. The choice of stability as the first
discriminator instead of necessity — the other
classification element of [5] — implies that some
« essential » elements can be delayed if they are not
stable enough. The client may not necessarily be willing
to accept these delays without discussion.
Here is the overview of a possible workflow in a UP like
frame:

1. Users, clients and domain experts assign a stability
level to the domain requirements, concepts,
objectives, etc.

2. The most stable elements are kept separated and
inserted into HC, i.e. a subset independent of
priority, necessity, and functionality is created.
Generally all the constraints will be in HC.

3. Based on HC a sub-project is created. Requirement
engineering, design and code construction are
realized with some overlapping to create the synergy
necessary to truly understand the problem at stake. If
the sub-project born from HC is too big because of
too many stable requirements, other criteria must be
employed to reduce the dimension of the increments.

4. The remaining elements are split up in two categories
and allocated to PB or FE.

5. If HC sub-project need some new not so stable
functions to implement a stable useful functionality a
priority is assigned to the new functions that belong
to PB or, less frequently, to FE.

6. The HC sub-project artefacts support the analysis of
PB elements that become the starting points for a
new series of increments to add to the product
created from HC elements.

7. All new user requirements are inserted in PB or FE
Artefacts
During the analysis three types of documents can be
written. At least one must be non empty:

• Hard Core Specification (HCS).
• Protective Belt Specification (PBS).
• Fluctuating Elements Description (FED).

The firsts two documents are machine independents, the
third one can be machine dependent.
The next table outlines the differences between the three
types of documents according to 1) the beginning of the
activity; 2) the changes after the first release; 3) the main
stakeholders and 4) the type of validation.

 Start Changes
after
release

Stake-
holders

Validation

HCS Concept
exploration

Very
infrequent

Domain
experts

Review
Domain
history

PBS HCS well
advanced

Infrequent Domain
experts,
users,
managers

Review
Domain
history

FED PBS well
advanced

Very
frequent

Users Running
program

Table 1: Artefacts characterization
In accordance with SWEBOK the first document
produced in the analysis activities (Concept of Operation)
is not a specification whereas the two documents that
follow it are specifications. In our approach it is the
opposite: the first two are specifications and the last one
is not a specification. Our approach implies that is not the
documents production sequence that determines the level
of formalism and the quantity of details but the level of
stability. The last one (FED) is the less formal and in
some cases it could even be reduced to some messy
annotations.

HCS is a specification without any software element.
It is totally independent from the structure of the machine
that will execute the required functions. Even if this
specification has the same position in the development
cycle as the System Definition Document of SWEBOK, it
has a different role and a very different content. The role
of HCS is not to “define high level system requirements”
but to “specify the stable elements with as much detail as
it is possible”. In other words: the concepts and
requirements of HCS do not need to be more detailed in

Protective Belt

Hard Core

Fluctuating Elements

Fig. 2 : Stability Categories

 CITSA 2006

5

other documents because all the details are described in
the HCS at the beginning of the product life cycle.
Concerning the contents: the System Definition Document
defines all high level requirements whereas HCS defines
only some elements (particularly constraints and
concepts) but with all the possible details. In an iterative
and incremental development architecture based, HCS
provides a minimum of stability in order that the machine
subsequently will not be destroyed by a functional or
quality “tsunami”. In a domain where only the other
machines are stable, HCS will be filled with references to
the specifications of the other machines.

PBS is a document more agile than HCS but with the
same structure. It rarely contains constraints and
objectives. It is above all concerned by requirements, i.e.
by the limits that the machine must force on the domain.
When one must create a machine for a domain in which
all the interfaces are with other already specified
machines, the PBS in not necessary because all
requirement are stable and specified. When the human
machine interface is for only one role, the PBS can be
empty because a prototype or/and a FED is a better
choice.

FED is the document that describes the more volatile
elements of the system. It is a document less structured
than HCS and than PBS. Sometimes the information of
the FED can be written in the program listings as
comments or in an executable prototype

Exemples

1. High level Data Link Control (HDLC) for UNIX
operating system. All the functional requirements for
this software are part of the HCS. They are written
for several decades in an ISO standard describing the
protocol. On the other hand, some non-functional
requirements should be put in the PBS. We can
imagine some non-functional requirements
concerning the person machine interface for testing
the protocol to be part of FED.

2. Communication networks and Systems in substations
where the IEC 61850 interoperability standard is
enforced. The interoperability quality requirement is
changed into a constraint by the IEC standard. The
requirements concerning the types of command
model (direct with normal security, direct with
enhanced security, etc), for example, will be in the
HC but the choice of the type will be in PBS or FED.
The choice between PBS and FED depends on others
quality requirement as changeability.

3. WEB site for a new publisher. Only some objectives
and the main concepts (as book, writer…) will be in
the HCS. The usability requirements will be into the
PBS and most functional requirements will be into
the FED.

4. Cruise control for cars. The safety requirements are
elements that will certainly be into HCS.

5. Application for the 31 bottles of Bordeaux cellar of a
friend. Some concepts will go into the HCS and all
the others requirements into the FED. The HCS

reduced to two or three pages. No others documents
are needed. Extreme programming is certainly the
ideal development methodology in this case.

The following table comments the eight combinations of
presence (x) and absence (0) of a kind of document

HCS PBS FED Comment
0 0 0 There is not a true problem to solve.
X 0 0 All requirements are stable and no

perfective maintenance foreseen
0 X 0 During the product life cycle there

will be significant changes
X X 0 There will be no unforeseen changes.
0 0 X À research or toy problem
X 0 X A lot of changes with a solid kernel.
0 X X Nothing is very stable but… a very

realistic problem
X X X The majority of important projects

will be here.
Table 2: Artefacts characterization

CONCLUSION

Even if the approach we are putting forward is far from
totally elaborated we hope it brings a few positive
elements to the automation and software engineering
theory.

Subset versus “all”
The HC elements provide a strong base from which the
stakeholders can examine in more details the concept and
the requirements. The more stable elements play an
important part as catalysts for the deepening of the field.
Since stability is independent from necessity and from
functionalities, there is a good probability that when the
more stable elements are established, we end up with
diversified functional elements and so — unlike a use
case based approach — the risk of realizing some
functions at the expense of some other is reduced. For
instance, let’s consider the next figure.

This figure includes three functional groups (FG1, FG2
and FG3) and each of them includes elements from the
three previous defined categories. The project begins
with the construction of the HCS, starting from a private
element pertaining to FG1, from a private element
pertaining to FG2, from 2 private elements pertaining to
FG3 and from an element shared by FG1 and FG2 (the
rectangles of the figure). We get a transversal section of

FG1

FG2

FG3

Fig. 3 : Functional groups and stability

HC

PB

FE

 CITSA 2006

6

three functional groups allowing a progression on all the
aspects of the project without broaching « all » the
requirements.
Among the implications of our approach, let’s mention
the following: resources and time being constant, it is
better if we broach in details a functions’ subset rather
than broaching “all” them in a more general way.

Domains’s concepts versus requirements
Pretending that the concepts of a domain are more stable
than the functions is a platitude in the field of automation.
One consequence of this consideration is that HCS will
contain more conceptual diagrams than requirements or
use cases. Applaying MSEB the analysis of the domain
will therefore precede the system design, in almost all the
cases. This is very important with the aim of countering
the present primacy of uses cases (an efficacious system
design tool) in processes like UP [4]

Details and refinements
Going in depth means adding details. But details are, on
one hand, a way of understanding and, on the other hand,
they are factors preventing us to form a clear picture of
the overall structure. But, since the more stable elements
are the ones stakeholders know best, we can go further in
the analysis of the domain studying the last details
(eventually by programming them) without running the
risk that the details could cloud the comprehension of the
domain.

In a project, no matter the method you use, it is often
difficult to determine the starting moment of the artefact
which gives a more detailed version of the preceding
ones. The moment in which a Software Requirements
Specification should be started is never easy to determine
and it’s even more difficult to determine when you can
regard it as complete. In a project of the slightest
complexity, you can even say it is never completed. With
MSEF, the HCS can be completed and « locked » very
early in the process, and for the whole life of the product.
This locking of HCS furthers the progression of the rest
of the project because the products “generated” by HCS,
will probably not be changed.

Agile versus classic methodologies
The beginning of the implementation and the overlapping
of analysis, design and code construction are the most
important dissimilarities between agile and classic life
cycle. If the classic methodologies’ rigidity is often too
restrictive, the agile methodologies “vagueness” hides big
dangers – for instance the danger of jumping into the
coding activity because you don’t have the intellectual
strength to carry on the analysis with the risk of getting a
product quite difficult to modify. This opposition being
too universal to be true, hides the fact that, sometimes
overlapping is useful and sometimes useless and
dangerous. We believe that MSEF makes possible to
apply the classic methods to HC and, eventually, to do
extreme programming with FE. From that point of view,
you regard HCS and its implementation as constraints to
be respected by the others elements. And, in a project, it’s

always easier to respect realistic constraints than
unsettled requirements

The importance of writing
Automation, as an exchange between machines and bare
domains (i.e., without the participation of human
creativity), must be based upon a clear conceptual
structure. Even if, as argued by extreme programming
supporters, exchanges between programmers are really
important, it seems obvious to us that, concerning
complex problems (the only ones that deserve to be the
subject of discussions and papers), exchanges must be
established in writing not only because “scripta manent”
but also and above all because what is written acquires its
own autonomous life and for that raison becomes an
object that ask for analysis.

ACRONYMS
FE Fluctuating Elements
FED Fluctuating Elements Description
HC Hard Core
HCS Hard Core Specification
HDLC High level Data Link Control
MSEF Most Stable Element First
NFD Non Formal Description
PB Protective Belt
PBS Protective Belt Specification
SE Software Engineering
UML Unified Modeling Language
UP Unified Process

REFERENCES
[1] I. Jacobson et al., Unified Software Development
Process, Addison-Wesley, 1999.
[2] IEEE, SWEBOK 2004 version, http://www.swebok.org
[3] I. Maffezzini et al., “Prolègomènes à une critique du
génie logiciel- Partie 1 : Contextualisation”, Génie
Logiciel, No. 66, September 2003. pp .2-16.
[4] M. Jackson, Problem Frame. Addison Wesley, 2001.
[5] IEEE, Recommended Practice for Software
Requirement Specification, Std.830-1998.
[6] I. Lakatos, Proofs and Refutations. Cambridge:
Cambridge University Press.
[7I. Maffezzini, L. Martin, “Prolègomènes à une critique
du génie logiciel- Partie 1V: Exigences”, Logiciel, No.
72, March 2005. pp .2-23.

 CITSA 2006

7

	Exemples
	Subset versus “all”
	Domains’s concepts versus requirements
	Details and refinements
	Agile versus classic methodologies
	The importance of writing

